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PARTICULARITIES OF THE CYCLIC A/D CONVERTERS ENOB DEFINITION 
AND MEASUREMENT1,2

The paper is devoted to the methods of accurate assessment and analysis of the expected and 
actual effective number of bits (ENOB) of cyclic analog-to-digital converters. The equivalence 
of defi nition of ENOB in the IEEE Standard 1241-2000 and proposed in earlier author’s works 
analytical defi nition formulated on the basis of distributions of the input signal and conversion 
errors. Indirect and direct methods of ENOB measurement are considered. The presented results 
can be used for a development of accurate methods of performance analysis and testing of the 
cyclic and other ADCs.
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1. INTRODUCTION

High requirements to the speed and accuracy of conversion under general tendency 
to diminish the sizes, cost and power consumption of analog-to-digital converters (ADC) 
converters are best satisfi ed in the cyclic converters (CADC). The main factor complicating 
the development of theoretical support of the design of both ADC and CADC is multiple non-
linearity of the ADC’s transition function conditioned by the fi nite input range of the converters, 
non-linear mapping of the continuous set of analogue input signals into the discrete set of 
output codes, and by non-uniform setting of quantization thresholds. These non-linearities 
create signifi cant diffi culties in formulation of adequate characteristics of the conversion quality 
[1-4] and, as a consequence, in the development of mathematically grounded methods of their 
measurement. A not less important and unsolved task is an optimization of the architecture and 
parameters of CADC enabling full utilization of the resources of their analogue and digital 
components improving the converter’s performance. These circumstances complicate the design 

1 The work is supported by Grant 3 T11 059 29 of the Polish Ministry of Science and Information Society 
Technologies.

2 The work was presented at IEEE Instrumentation and Measurement Technology Conference (IMTC 
2006) [5] 
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of the converters and worsen their actual characteristics in comparison with those potentially 
achievable.

Nowadays, most commonly used measures of ADC performance are the effective number 
of bits (ENOB) and an equivalent measure – effective resolution (EFR) [1, 3–5], signal-to-
noise and distortion ratio (SINAD), total harmonic distortion (THD), differential (DNL) and 
integral (INL) nonlinearities, and some others [1, 2]. Except of ENOB, all the listed measures 
of conversion quality are determined for pure sine-wave testing signals with specifi ed amplitude 
and frequency. However, non-linearity of the ADC violates the principle of superposition; 
that makes the results of sine-wave tests approximate and sensitive to the changes of the form 
and parameters of the sinusoid. This decreases the reliability of the test results and radically 
increases the requirements to the form and parameters of the harmonic testing signals. Another 
disadvantage of sine-wave tests is non-uniformly weighed numerical assessment of quantization 
thresholds (“code transition levels” [1]) setting errors. The latter effect is caused by the slow 
changes of the signal near its extremes, specifi c for the harmonic signals, and fast changes near 
the zero values. As the result, the accuracy of quantization threshold measurements decreases 
in the central and increases in the upper and bottom regions of the ADC input range. At last, 
the sine wave cannot be considered as a typical signal at the ADC input. For these reasons, the 
search for more accurate characteristics of conversion quality, independent of the testing signals, 
as well as for accurate and methods of their measurement, convenient for applications, remains 
an unsolved issue in ADC design [2, 3].

Recently, researches in this direction are focused on measurements of the fl ash ADC 
performance. Other classes of converters, such as the cyclic ADC (sub-ranging, successive 
approximation, Σ∆, redundant sign digit, others) and pipe-line (cascade) ADC, are measured 
as "black boxes" and analysed using the methods and measures of quality used in the fl ash 
ADCs analysis and testing. However, investigations [5–10] and other show that these 
methods and measures cannot be directly applied to the analysis of cyclic ADC (CADC) and 
pipe-line ADC (PADC) and should be corrected. The necessity of corrections follows from 
the established fast normalization of quantization errors for the greater number of cycles 
or cascades of conversion [6, 7]. This violates the commonly used assumption, valid for 
high-quality fl ash ADC, that the conversion errors are distributed uniformly inside of each 
quantization interval. As the result, all the characteristics of CADC and PADC using this 
assumption also become inadequate.

An additional diffi culty following from the “black-box” approach to CADC and PADC 
analysis is the impossibility to determine the dependence of the conversion quality on the 
architecture, parameters and non-idealities of the analogue part, internal noise and distortions. 
For the same reason, defi nition of integral and differential non-linearities of CADC and PADC 
loses its sense. Also, a “black-box” approach does not permit to investigate the processes inside 
the converters, including the changes of accuracy and reliability of codes formed in sequential 
cycles or stages of conversion.

The paper generalizes the results of work [5] devoted to development of accurate formal 
methods of ADC performance analysis, optimization and testing. The investigation is performed 
for the case of the cyclic ADC. Special attention is paid to necessary correction of known 
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defi nition of ENOB and to the principles of ENOB measurement. There are considered indirect 
and direct methods of ENOB measurement initially studied in [6, 7]. Analysis of the direct 
method shows its advantage over conventional indirect methods of ENOB assessment [3, 4] 
due to exclusion of intermediate operation – estimation of the root mean square (rms) error 
of conversion. Direct measurement of ENOB permits also to apply optimal estimation theory 
and compute its estimates using extended optimal adaptive algorithms [11, 12]. Although the 
analysis is carried out for cyclic ADC, the presented analytical tools and qualitative results of 
investigation can be applied to the analysis and design of other classes of CADC, PADC and, in 
part, of the fl ash ADC.

2. MATHEMATICAL TOOLS FOR ANALYSIS OF CYCLIC CONVERTERS

The approach and mathematical tools presented in [6-10] can be applied to the analysis 
of both conventional and intelligent cyclic ADC (IC ADC). The term “intelligent CADC” 
refl ects their particularity of functioning: both forming of the output codes and adaptation of the 
analogue part are performed on the basis of permanently corrected model of the input excitation 
and predictions of its evolution [13]. To explain the principles of intelligent conversion and the 
sources of its advantages over known methods of cyclic conversion, below we compare the 
architectures of IC ADC and CADC (see Figs. 1, 2), methods of forming the input signal codes 
and mathematical models of both classes of the converters. As a specimen of CADC, the known 
sub-ranging converter ADI-1678 [13] is considered. The architecture and functioning of IC ADC 
are considered on the level of generalization adopted in [6-10].

Fig. 1. General structure of CADC.

Comparison of the converters shows that their analogue parts have identical architecture 
and differ only in the gains of amplifi ers (A). Digital parts of the converters differ both in 
construction and method of fi nal codes forming.

Particularities of the cyclic a/d converters enob defi nition and measurement
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Fig. 2. General structure of intelligent CADC.

2.1. Main mathematical models

To enable a formal description of the conversion process, mathematical models of the 
input signals, analogue and digital parts of the converters should be given. We assume that 
the input signals Vt = V(t) are zero mean Gaussian random processes with the power not 
greater than the given value  2

0
  and spectral power density equal to zero outside the frequency 

band [-F, F]. The sample-and-hold block (S&H in Figs. 1, 2) holds the value of the sample 
V(m) = V(m/2F), m = 1, 2, …, M, at the fi rst input of subtracting block Σ during the interval 

1/ 2T F= . Each sample V(m) = V(m/2F) of the input signal is converted in the same way, in 
n = F0/2F cycles, independently of the results of conversion of the previous sample (F0 is the 
pass-band of the analogue part of the converter). This permits to reduce the analysis of CADC 
work to consideration of the conversion of a single sample V(m) = V which, in turn, permits to 
reduce the model of the input signal to the form of a sequence of adjacent rectangular pulses with 
normally distributed amplitudes, suffi cient for initial research.

In each cycle, the intermediate code ˆ
kV  of the sample V is formed using previous code     

and digital “observation” – code     formed by the NADC – bit coarse pre-converter ADCIn at the 
output of the analogue part (NADC = 1 ÷ 6bits, depending on the type of CADC). This process can 
be described by the recursive equation common for all CADC:

(1)
 

which can be treated as a mathematical (input-output) model of the processes in the digital 
part of the CADC. Values of the gains kL  in (1) depend on the type of CADC. Mathematical 
model of the analogue part describing transformation of the input sample V into observations  
       can be introduced in the form of a piece-wise linear static transition function [6-12] applicable 
for the analysis of each CADC:
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(2)

where   are the residual signals formed by the subtracting block Σ and 
routed to the input of amplifi er A. Value  represents here the analogue equivalent of one-
step prediction of the sample value:               formed by the digital part of CADC 
in the previous cycle. Noise     is the sum of the noise of the feedback chain, S&H block, 
subtractor Σ and possible external noise. In the present work, noise      is considered as zero-
mean white Gaussian noise with the variance      . Parameter D determines the boundaries [-D, D] 
of the full scale range (FSR) of pre-converter ADCIn. Noise         is the quantization noise at the 
ADCIn output describing the distortions caused by the step-wise form of the transition function. 
According to the commonly used approach, this noise is assumed to be uniformly distributed 
inside of the quantization interval [−∆ADC/2; ∆ADC/2] =                                 ), and its variance is
 determined by formula:

 .  
.                                                  (3)

2.2. Constraints on the parameters of conventional CADCs

Fig. 3. Codes forming in conventional CADC [14].

Depending on the type of CADC, digital gains Lk in (1) and analog gains kC  in (2) may 
have fi xed or subsequently switched values connected by the reversed dependence:          .
In conventional CADCs, decimal values of the gains Lk are determined by parameters of the 
shifting elements in the digital part. In each cycle, before being added to the previous code         , 
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observations      should be shifted up by                                positions (see Eq. (1) and Fig. 3). 
Values mk represent here the number of least signifi cant bits (LSB) reserved for the correction of 
possible errors in the intermediate codes          usually realized as overlapping of mk bits of codes                  
       and           [14]. For this reason, in conventional CADC, the decimal form of the gains 

kL  
and analogue gains 

kC  always has the form of integer powers of two:

.                                                (4)
 
Initial values 

1
C and 

1
L  are determined by the ratio of FSR of pre-converter 

In
ADC  to 

FSR of CADC, and also must be equal to the integer powers of two. Final resolution of CADC 
after n cycles is equal to    .

2.3. Principles of intelligent A/D conversion

Intelligent and conventional CADC have identical analogue parts and differ in the principle 
of code forming and in realization of the digital part (see Figs 1, 2). Unlike CADC, in IC ADC 
each intermediate code ˆ

kV , (k = 1, …, n) is actually computed, according to the same recursion 
(1) in the form of 

compN -bit binary word, (Ncomp = 16, 24 or 32 bits depending on required fi nal 
resolution of IC ADC). The digital multiplier M placed at the input of digital part of IC ADC 
computes, in each cycle, the Ncomp -bit binary product       of Ncomp -bit gain 

kL  and NADC -bit 
observation      . The computed code              is added in the adder (Ad) to the estimate             computed    
in the previous cycle. New Ncomp -bit estimate              is routed from the adder to one-
cycle storing unit z-1 and to the input of feedback D/A converter DACIn. The analog equivalent 
ˆ
kV  of this estimate is routed to the second input of the subtracting block and a new cycle of 

conversion begins.
This process is illustrated in Fig. 4 where changes of “true” non-erroneous bits (denoted by 

zeros) in the codes ˆ
kV , k = 1, 2, … are presented.

Fig. 4. Codes forming in intelligent CADC.
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Transition to the long-word arithmetics in IC ADC removes constraint (4) on the values of 
gains ,  k kL C  and permits to set the analogue gains 

kC  to the values somewhat greater than in 
conventional CADC. This increases the signal-to-noise ratio (SNR) at the output of pre-converter 
ADCIn and improves the quality of estimates. However, gains Ck can be increased only till a 
defi nite value, above which the probability of CADC overloading exceeds the given permissible 
value μ. Optimal values Ck and Lk which minimize MSE of conversion                            under 
given μ are determined, for each cycle, by the following formulas [6-10, 12] (values Lk are 
presented in decimal form):

   
(5)

and   

(6)

where:  

(7)

is the maximal value of SNR at the ADCIn output. Value        is the power 
of the useful component of the signal     ; and                   is the power of quantization noise 
of pre-converter 

In
ADC . The saturation factor α in (5) – (7) is connected with the permissible 

probability of overloading μ by the relationship:

  
(8)

where: Φ(α) – is the Gaussian error function. Probability μ determines the probability 
γ = 1 - (1-μ)n ≈ nμ of appearance of distorted codes at the IC ADC output, which coincides 
with the word error rate (WER) introduced in IEEE Standard 1241-2000 ([1], p. 4.13) as an 
independent characteristic of the conversion performance. Initial values for recursions (1), (6) 
are determined by the mean value 

0

ˆ 0V =  and permissible power               of the input signal, 
respectively.

One should notice that gains (5) are strictly optimal only if distributions of random values 
and noise in models (1), (2) are Gaussian [11, 12]. The step-wise form of the ADCIn transition 
function makes distribution of quantization noise      non-Gaussian. For this reason, values (5) 
are only close to the optimal ones (sub-optimal) and can be corrected in the way improving the 
fi nal resolution of IC ADC [8-10]. 
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3. DISCRETE SCALE OF CODES AND ENOB

In works [6, 7] it was established that independently of the form and distribution of the input 
signal, distribution of fi nal code errors in IC ADC quickly normalizes. In Figure 5, changes of 
histograms of conversion errors in sequential cycles are shown. Plots in Figs. 5a, b are obtained 
in simulation experiments as the result of conversion of M = 10 000 samples of a sinusoidal input 
signal, plots in Fig. 5c correspond to a random, uniformly distributed input signal. The results 
show that beginning with the “threshold” number of cycles n*, all histograms take the Gaussian 
form.

a)              b)  c)
 

Fig. 5. Evolutions of histograms of conversion errors versus number of cycles under different classes of the input 
signals: a) FSR/2 sine wave; b) (FSR-LSB)/2 sine wave; c) random uniformly distributed signal.

The threshold number of cycles corresponds to the instant of time when rms of conversion 
errors 

               
 (rms noise in terms of [1]) reaches the value σv of rms of the analogue noise at 

the amplifi er (A) input:                      . One can show that the threshold value n* determines the 
optimal number of conversion cycles and can be assessed according to the formula [6-10, 12]:

  
.                                                (9)

The distribution of conversion errors for k ≥ n* takes the form:

 .                        (10)

Using (10), one can easily show that values of the signal V , which produce the code word 
ˆ
kV , lie in the interval                                                                       with a probability not smaller than 

1 - μ.
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3.1. Discrete scale and ENOB of an ideal IC ADC

Let us divide the FSR max max

0 0
[ - , ]V V  of an IC ADC into Mk = FSR/∆k adjacent 

intervals           each of the width              
(i = 1, …, Mk, k = 1, 2, …). According to what has been said above (see also Fig. 5), the distance 
between each analogue value V from the interval        and its central point 
                                   is not greater than ∆k/2 with the probability 1- μ. This means that each 
discrete value ( )ˆ i

k
V  can be considered as the result of measurement of the input sample V with the 

error practically never greater than ±∆k/2. It is easy to notice that the value ( )ˆ i

k
V  can be replaced 

by the number of corresponding interval. In turn, the number of bits necessary for unambiguous 
binary presentation of the numbers i = 1, …, Mk of intervals                  is equal to:

  
.                              (11)

On  the  other  hand, each Nk-bit  binary  word ( )ˆ i

k
V   determines  a  corresponding  set             

of possible values of the computed Ncomp-bit estimates ˆ
k

V , (Ncomp > Nk) which begin with identical 
sequence of Nk most signifi cant bits ( )ˆ i

k
V . It is easy to see, that each “continuous” Ncomp-bit estimate 

ˆ
k

V  from the set              can be replaced by the discrete estimate ( )ˆ i

k
V , which consists of Nk 

initial bits of the code ˆ
k

V , and ( )ˆ i

k
V  is the code of the input sample V measured with an error not 

greater than ±∆k/2. The latter shows the way of accurate transition from continuous to discrete 
scale of estimates with the scale unit ∆k. Formula (11) determines the mean number of signifi cant 
bits in the computed estimates ˆ

k
V  which has the same sense as the effective number of bits 

(ENOB) introduced in [1]. One should notice that formula (11) is valid in the case of normal 
distribution of quantization errors and ideal (equidistant quantization levels) transition function 
of the analogue part of IC ADC.

Fig. 6. Illustration of transition to discrete scale of estimates.

For Gaussian input signals, FSR of the converters can be determined as the interval 
max max

0 0
[ - , ] =V V  [-ασ0, ασ0] where                 is the maximal permissible power of the input signals 

Particularities of the cyclic a/d converters enob defi nition and measurement

( 1) ( )
[ , ]

i i

k kV V = [ kiV 1
max

0 ; kiV max

0 ]

( 1) ( )
[ , ]

i i

k kV V
( ) max

0

ˆ i

kV V

( 1) ( )
[ , ]

i i

k kV V

2 2 2
log log logk k

kk

FSR FSR
N M

22 P

( )ˆ( )
i

k kV

ˆ( )k kV

0 0

2 P



18

(choice α = 3 refers to "three sigma" FSR. Nowadays, values α = 4 and 5 are usually taken. 
For the threshold mode of conversion (conversion of each sample is fi nished after a threshold 
number of cycles n = n* and 

         
), taking into account FSR = 2ασ0, formula (11) for 

ENOB of an ideal IC ADC can be rewritten in the form:

  
.                          (12)

Left terms of this formula are accurate for n ≥ n* cycles of conversion. For n < n*, this term 
can be used for approximate evaluation of ENOB of an ideal IC ADC [5-10].

It is necessary to remember that formula (11) is valid only if overloading of the converter 
is excluded with a probability not less than 1- μ. For conventional, non-optimal CADC this 
probability, as well as the word error rate (WER), is not a characteristic of special importance 
and, apart from the case high-precision converters, can be omitted. However, in each sub-
optimal ADC where close to full utilization of resources of the analogue and digital elements 
is achieved, ENOB and WER are mutually connected and WER becomes a not less important 
characteristic of conversion quality. In practical applications, WER can be replaced by the 
equivalent characteristic – bit error rate (BER) widely used in digital communications [15].

3.2. Relation between standard and introduced ENOB defi nitions

The defi nition of ENOB given in IEEE Standard 1241-2000 ([1], p. 4.5.2) for fl ash ADC 
has the form 

,                              (13)

where N is the ENOB (resolution) of the ideal ADC, rms noise =    is measured for actual 
converters with non-ideal transition function using formula ([1], Sect. 4.5.1.1):

  

(14)

and σ = ∆2/12 is the ideal rms quantization error computed according to formula (3) where D 
and NADC should be replaced by the values FSR/2 and N, respectively. If DNL, INL, offsets, 
gain setting errors and other non-idealities of the analogue part are negligibly small, rms noise 
                                    ,  and formula (13) becomes an identity E = N. Contrary to [1], where the 
value N is assumed to be given, for IC ADC this value is assessed according to (11).

Comparison of formulas (11) – (13) shows that defi nition of ENOB of IC ADC introduced 
in Sect. A generalizes the defi nition of the ideal ENOB N given in [1]. Assuming that rms noise 
of actual IC ADC is measured in the same way as rms noise of the fl ash ADC, that is according 
to (13), one may rewrite (11) in the equivalent form:
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.                               (15)

Values   

,                            (16)

in this formula represent the ENOB of actual IC ADC in full concordance with the defi nition given 
in [1] (see Eq. (13)). The single but principal difference concerns the defi nition of ENOB Nk of 
an ideal IC ADC where          should be replaced by the assessment                    , due to 
fast normalization of quantisation errors. Additional researches show that a similar correction 
is to be introduced also in defi nitions of ENOB of other classes of CADC and pipe-line ADC, 
which is to be measured according to (16), not (13).

In practice, the width of an ideal quantization interval     can be assessed using 
simulations and measurement of the width of histograms of output quantization noise. For the 
greater numbers of cycles and Gaussian quantisation errors, ∆k can be assessed using (14) and 
formula Δk = 2ασk. To assess the fi nal ENOB of ideal IC ADC at the threshold point n = n*, it is 
enough to assess Δn using histograms of the noise νk (or signal ek) at the input of amplifi er (A).

It is worth noting that in the threshold mode (n = n*) of conversion, substitution of (12) 
into (9) and application of (7) and formula n* = F0/2F (see Sect. 2.1.) permit to obtain the 
relationship:

.                                                       (17)

Formula (17) is the analog of Shannon’s formula [15] for channel capacity and determines 
the maximal information fl ow R through the converter, achievable under probability of appearance 
of rough errors (IC ADC overloading) not greater than a given small μ [9, 10, 12]. 

4. DIRECT MEASUREMENT OF ENOB

Computing the estimates ˆ
kV in the form of long binary words permits to directly measure 

the number of signifi cant bits (denoted further as 
kNOB , k = 1, …, n) that is the number of 

“true” bits before the fi rst erroneous bit (FEB) in the code ˆ
kV . It is easy to see that NOBk is equal 

to the number of zeros: (0)
( )kn V  before the fi rst unity (FEB) in the binary presentation of the 

conversion error      . To determine this number, it is suffi cient to register the 
number of position (1)

( )kn V  where the fi rst unity in the binary word bit

kerr appears (in Fig. 4, FEB 
is denoted by unity). Values     measured in this way depend on 
the current values of the input signal, therefore correct analysis of the conversion quality requires 
the application of statistical tools and assessment of distribution of NOBk or FEB values. The 
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latter can be done using modelling technique [16] and histograms of NOBk [5-7], which can be 
obtained in simulation experiments.

a)             b) c)

Fig. 7. Evolution of histograms of FEB positions (distinguished by white color) versus number of cycles: a) top-
view; b) top view from the level of 50 hits; c) all the nonzero hits. White continuous line corresponds to ENOB 

measured indirectly.

A typical plot of changes of the histogram of FEB appearance in different positions of the 
output codes ˆ

kV  depending on the number of cycles is presented in Fig. 7a. The brighter white 
color refers here to the higher frequencies of FEB appearance. In Figure 7b, the top-view of this 
histogram a from the level of 50 counts is shown, and in Fig. 7c all the non-zero FEB – counts 
in corresponding positions are shown. The plots permit to see a large amount of rarely appearing 
FEBs (Fig. 7c), and all FEBs that ever appeared in experiment (M = 10 000 samples). Continuous 
white lines in Fig. 7 a-c show the changes of ENOB computed using the basic defi nition (16) 
where rms noise       was computed, for each k = 1, …, 50, according to formula (14).

Analysis of histograms shows that the distribution of FEB has a sharp low boundary (see 
Figs 7c-d), which can be used as an assessment of the actual values of ENOB in sequential cycles 
of conversion. Preliminary investigations show that conventional indirect method of ENOB (16) 
measurement using rms (14) determines the low boundary of estimates of ENOB obtained in direct 
measurements. We must say that values of ENOB measured directly do not depend on any assumptions 
about dependencies of ENOB on ideal and real rms noise, as it is in indirect measurements, and 
give an objective information about the real resolution of the converters. The complex form of 
FEB (NOBk) histograms shows the necessity of their careful statistical analysis and elaboration 
of measures and methods of IC ADC performance analysis and measurement most adequate and 
convenient for applications. This concerns also other classes of ADCs – it was established [6, 7] that 
FEB-histograms of each ADC have a complex asymmetric form, and heuristic defi nitions of ADC 
resolution and different methods of their measurement lead to different results.

5. CONCLUSIONS

The results of work show that most convenient for application and adequate characteristic 
of conversion quality is the effective number of bits (ENOB). It is shown that a perspective 
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way of improvement of the effi ciency of cyclic ADC is the transition from low-bit logic to long 
binary word arithmetic in the code forming algorithm. This removes the limitations existing in 
conventional CADC and enables their optimization including the application of optimal data-
processing algorithms and transition to a discrete scale of estimates [5-10, 12].

The transition considered in Sect. 3 from continuous to discrete scale of estimates (codes) 
permits to introduce, in a natural way, an analytical Eq. (12) for the ENOB, which can be directly 
connected with parameters of analogue elements and the code forming algorithm, parameters 
setting errors, non-linearities, statistic characteristics of the input signals and noise [5-10, 12]. 
There is shown the conceptual equivalence of the basic defi nition of ENOB so determined and 
given in [1]. However, for cyclic ADC this measure should be corrected, taking into account fast 
normalization of the conversion errors for the greater number of cycles (see formulas (12), (14), 
(16)).

The direct method of ENOB measurement discussed in Sect. 4, based on FEB-histograms 
permits not only to unify and make the assessments of CADC resolution more adequate and 
accurate, but also to elaborate more adequate and convenient testing methods for other classes 
of ADC. The complex structure of FEB-histograms shows the necessity to solve this task using 
advanced tools of statistical analysis and estimation theory.
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